skip to main content


Search for: All records

Creators/Authors contains: "Kliewer, Christopher J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We present spatially enhanced electric-field-induced second-harmonic (SEEFISH) generation with a chirped femtosecond beam for measurements of electric field in mesoscale confined geometries subject to destructive spurious second-harmonic generation (SHG). Spurious SHG is shown to interfere with the measured E-FISH signal coherently, and thus simple background subtraction is not sufficient for single-beam E-FISH approaches, especially in a confined system with a large surface-to-volume ratio. The results show that a chirped femtosecond beam is effective in preventing higher-order mixing and white light generation in windows near the beam focal point which further contaminates the SEEFISH signal. The successful measurements of electric field of a nanosecond dielectric barrier discharge in a test cell demonstrated that spurious SHG detected with a congruent traditional E-FISH approach can be eliminated using the SEEFISH approach.

     
    more » « less
  2. We report the development of a simple and sensitive two-beam hybrid femtosecond/picosecond pure rotational coherent anti-Stokes Raman scattering (fs/ps CARS) method to simultaneously measure the rotational and vibrational temperatures of diatomic molecules. Rotation–vibration non-equilibrium plays a key role in the chemistry and thermalization in low-temperature plasmas as well as thermal loading of hypersonic vehicles. This approach uses time-domain interferences between ground state and vibrationally excited N2molecules to intentionally induce coherence beating that leads to apparent non-Boltzmann distributions in the pure rotational spectra. These distortions enable simultaneous inference of both the rotational and vibrational temperatures. Coherence beating effects were observed in single-shot fs/ps CARS measurements of a 75 Torr N2DC glow discharge and were successfully modeled for rotational and vibrational temperature extraction. We show that this method can be more sensitive than a pure rotational fs/ps CARS approach using a spectrally narrow probe pulse. Lastly, we experimentally measured the beat frequencies via Fourier transform of the time-domain response and obtained excellent agreement with the model.

     
    more » « less
  3. null (Ed.)
  4. We present one-dimensional (1-D) imaging of rotation-vibration non-equilibrium measured by two-beam pure rotational hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering (fs/ps CARS). Simultaneous measurements of the spatial distribution of molecular rotation-vibration non-equilibrium are critical for understanding molecular energy transfer in low temperature plasmas and hypersonic flows. However, non-equilibrium CARS thermometry until now was limited to point measurements. The red shift of rotational energy levels by vibrational excitation was used to determine the rotational and vibrational temperatures from 1-D images of the pure rotational spectrum. Vibrational temperatures up to 5500 K were detected in aCH4/N2nanosecond-pulsed pin-to-pin plasma within 2 mm near the cathode. This approach enables study of non-equilibrium systems with 40 µm spatial resolution.

     
    more » « less